
Supply Chain Security
with Go

Michael Stapelberg
<stapelberg@golang.org>

GPN, 2024-May-31



Agenda

● Part 1: Keeping your Go build environment up to date

● Part 2: Is my program vulnerable?

● Part 3: Can we trust Go modules? [proxy, sumdb]

● Part 4: Best practices: separation, least privilege, sandboxing

● Part 5: supply chain minimalism: gokrazy



Context / Lens

● You become aware of a security vulnerability! What now?

● This talk tries to answer that question for various common scenarios.



Part 1: Keeping your Go environment up to date



Setting the scene

● POV: developer or admin — you’re responsible for running a Go program

● We’re using Go modules (introduced in Go 1.11 in 2018),

meaning we have a go.mod file like this (go mod init, go mod tidy):

module github.com/robustirc/robustirc

require github.com/google/renameio/v2 v2.0.0

// …



Is my build environment up to date?

● Compare your version with go.dev/dl  

% go version
go version go1.22.0 darwin/arm64

https://go.dev/dl


Is my build environment up to date?

● Compare your version with go.dev/dl  

% go version
go version go1.22.0 darwin/arm64

https://go.dev/dl


Can you use the latest toolchain?

● Mental model: the latest Go version (1.22.2) is the best implementation

of a certain Go language version (1.22)

● But what if your program was developed for an older Go version?

● Go 1.21 improved both backward and forward compatibility!



Backward compatibility: GODEBUG

● Changes that risk breaking programs are tied to a GODEBUG setting

e.g. GODEBUG=x509sha1=1 if you need insecure SHA-1 hashes

● GODEBUG defaults are tied to the go.mod language version line:

Go 1.22 introduced gotypesalias=0

Go 1.23 will change the default to gotypesalias=1

● → go.dev/blog/compat 

https://go.dev/blog/compat


Forward compat: build with a newer Go toolchain

● Since Go 1.21 (August 2023), main modules can require minimum toolchain 

versions (if they depend on a specific fix, for example) and those

toolchains are downloaded on demand (adjust with GOTOOLCHAIN env var):

% go mod edit -toolchain go1.22.2

% go install ./cmd/scan2drive
go: downloading go1.22.2 (darwin/arm64)

% go version -m =scan2drive
/Users/michael/go/bin/scan2drive: go1.22.2
[…]



Forward compat: build with a newer Go toolchain

● Can you trust these toolchains? What’s inside?

● Go 1.21 toolchain and newer versions are perfectly reproducible:

now built without cgo, built with -trimpath, etc.

→ details at go.dev/blog/rebuild 

→ daily reports at go.dev/rebuild 

● → go.dev/blog/toolchain

https://go.dev/blog/rebuild
https://go.dev/rebuild
https://go.dev/blog/toolchain


Recap: go.mod file

module github.com/robustirc/robustirc

go 1.21

toolchain go1.22.2

require github.com/google/renameio/v2 v2.0.0

// …

Go language version

minimum Go toolchain version (optional)



● Subscribe to the golang-announce mailing list:

Go is released in February and August of each year

pre-announcement 3-7 days before security fixes (per the Security Policy)

Where can you get informed about new releases?

https://groups.google.com/g/golang-announce
https://go.dev/doc/security/policy


Part 2: Is my program vulnerable?



Is my program vulnerable?

● Since Go 1.18 (March 2022), go embeds information about the build:

% go version -m ./scan2drive
./scan2drive: go1.22.2

path github.com/stapelberg/scan2drive/cmd/scan2drive
mod github.com/stapelberg/scan2drive (devel)
dep github.com/gorilla/sessions v1.2.0
[…]
build vcs=git
build vcs.revision=7e8a2ca85438f0bcc43603bde2337fd0c644b9d2
build vcs.time=2023-03-07T07:51:30Z
build vcs.modified=false



Is my program vulnerable?

● buildinfo gives us a chance to locate the corresponding source

● govulncheck does static analysis (to reduce spurious reports):

go install golang.org/x/vuln/cmd/govulncheck@latest

● gorilla/sessions report: https://pkg.go.dev/vuln/GO-2024-2730 

http://golang.org/x/vuln/cmd/govulncheck@latest
https://pkg.go.dev/vuln/GO-2024-2730


govulncheck example

% govulncheck ./... 

Scanning for dependencies with known vulnerabilities...
Found 1 known vulnerability.

Vulnerability #1: GO-2024-2730
    Directory traversal in FilesystemStore in github.com/gorilla/sessions
  More info: https://pkg.go.dev/vuln/GO-2024-2730
  Module: github.com/gorilla/sessions
    Found in: github.com/gorilla/sessions@v1.2.0
    Fixed in: N/A
    Example traces found:
      #1: internal/webui/web.go:93:30: webui.UI.indexHandler calls 
sessions.FilesystemStore.Get
      #2: internal/webui/web.go:76:25: webui.UI.constantsHandler calls 
sessions.Session.Save



Mitigating vulnerabilities (1): updating

● Easiest way: go get to update to a fixed version

● Only needed in the main module!

Other languages require updating versions in your dependency modules,

but Go uses Minimum Version Selection

→ main module’s version effectively overrides dependencies’ versions

● → research.swtch.com/vgo-mvs 

https://research.swtch.com/vgo-mvs


Mitigating vulnerabilities (2): patching

● Create a writable working copy of your dependency:

git clone https://github.com/google/renameio

● Add a replace directive to your go.mod file to pick up this directory:

replace github.com/google/renameio => /home/michael/renameio

http://github.com/google/renameio


Mitigating vulnerabilities (2): patching

● Make your changes, verify your binary picked them up:

% go version -m ./scan2drive

/home/michael/go/bin/scan2drive: go1.22.2

path github.com/stapelberg/scan2drive/cmd/scan2drive
mod github.com/stapelberg/scan2drive (devel)
dep github.com/golang/protobuf v1.5.2

h1:ROPKBNFfQgOUMifHyP+KYbvpjbdoFNs+aK7DXlji0Tw=
dep github.com/stapelberg/airscan v0.0.0-20230123183513-bed4bafc7ef4
=> /home/michael/go/src/github.com/stapelberg/airscan (devel)

dep go.opencensus.io v0.22.4 h1:LYy1Hy3MJdrCdMwwzxA/dRok4ejH+RwNGbuoD9fCjto=
[…]



Mitigating vulnerabilities (3): removing

● If not possible, maybe you don’t absolutely need the feature right now?

→ Open your editor, comment out the code.

→ Verify: Does the module disappear from go.mod after go mod tidy?



Easy & Fast Rollouts means Fast Mitigation!

● I have a deploy-all.sh script, which consists of lines like these:

(cd smtp-dkim-proxy && make push)

(cd authelia && make push)

…

● Each project has the push Makefile target defined like so:

CGO_ENABLED=0 GOOS=linux GOARCH=amd64 \

go build -o bin/proxy -trimpath ./cmd/proxy && \

rsync -rav bin exo1:/srv/ && \

ssh exo1 systemctl restart proxy



Part 3: Can we trust Go modules?



Go Modules

● Go modules are always safe to download

The go tool never runs code when downloading a module

Module authors run go generate and submit the resulting code to git

● Go modules are always generated from source

→ not maintainer-provided tarballs 

● → go.dev/ref/mod 

https://go.dev/ref/mod


Go Module Proxy

● published module versions are immutable in the go module proxy

● Enabled by default if you install from go.dev

Some Linux distributions may disable the proxy by default (slow!)

● Very clear one-page privacy policy at proxy.golang.org/privacy

Working with private modules? set GOPRIVATE= env var

Better: run your own (company-internal) proxy  

https://go.dev
https://proxy.golang.org/privacy


go.sum / Go Checksum Database

● go.sum stores a cryptographic hash of the module contents on first use,

which the go tool verifies when later downloading a module:
github.com/google/renameio/v2 v2.0.0 h1:UifI23ZTGY8Tt29JbYFiuyIU3eX+RNFtUwefq9qAhxg=

github.com/google/renameio/v2 v2.0.0/go.mod h1:BtmJXm5YlszgC+TD4HOEEUFgkJP3nLxehU6hfe7jRt4=

● Checksum database stores these checksums centrally in a verifiable way

→ allows safely using an otherwise untrusted proxy

● → go.dev/blog/module-mirror-launch 

https://go.dev/blog/module-mirror-launch


Part 4: Best practices: sandboxing,
separation, least privilege



Best practice: separation

● Split out untrusted clusters of dependencies into their own process, or 

container, or VM, or machine, …

● For example: if you move QR code generation into its own process, the 

module authors of the QR code module (and dependencies!) cannot run 

arbitrary code in your main process



Best practice: least privilege / sandboxing

● Run different services under their own dedicated user account,

not everything as root or any other shared user

● When deploying as a systemd service, enable syscall filtering (seccomp)

→ systemd-analyze security

→ example hardened systemd .service file for a Go service:

https://github.com/stapelberg/qrbill/blob/master/systemd/qrbill.service 

https://github.com/stapelberg/qrbill/blob/master/systemd/qrbill.service


Best practice: immutability

● make as much as possible immutable / read-only

● When deploying with systemd: use ProtectSystem=strict



Part 5: Supply chain minimalism:
the gokrazy appliance platform



gokrazy

● from-scratch appliance platform built entirely in Go

Linux kernel + (firmware) + gokrazy Go userland + <your app(s)>

no C userland or runtime environment! no glibc, OpenSSL, xz, …

● gok new # create ~/gokrazy/hello/config.json 

gok overwrite --full /dev/sdx # write SD card for Raspberry Pi

● → gokrazy.org/quickstart 

https://gokrazy.org/quickstart/


gokrazy: how far will it get you?

● Example use-case: want to remotely trigger Wake-on-LAN

● Deploy on a Raspberry Pi Zero 2 W, which runs at ≈1W!

Just need a free USB plug somewhere, the Pi Zero 2 W has WiFi

(gokrazy supports encrypted WiFi without wpa_supplicant or similar)

● Use Tailscale to make the service reachable over the internet!

mesh VPN, handles authentication, NAT traversal, etc.



gokrazy: what can you build this way?

● Document management: I scan physical mail with scan2drive

● Smart home: instead of using Home Assistant or Node RED,

I integrate my smart home components with a few lines of Go

(I also replaced my HomeMatic controller with a Go one)

● Internet router: router7.org is a small home internet router

https://github.com/stapelberg/scan2drive
https://michael.stapelberg.ch/posts/2021-01-10-mqtt-introduction/
https://michael.stapelberg.ch/posts/2017-04-16-homematic-reimplementation/
https://router7.org/


gokrazy: supply chain

● github.com/gokrazy/kernel — auto-updated Linux upstream kernel

github.com/gokrazy/firmware — auto-updated Raspberry Pi firmware files

● gok get wraps go get, all gokrazy programs are Go modules

can use govulncheck for security analysis

● gok update updates an instance over HTTP(S)

automate it from a cron job or similar

http://github.com/gokrazy/kernel
http://github.com/gokrazy/firmware


Conclusion

● Supply chain management can be tedious, but Go makes it easy enough

● Think about your supply chain and how you could make it smaller

● Minimalist solutions like gokrazy can help for select use-cases

Makes me sleep better at night, and I hope it gives you all some peace, too



Thank you for your attention!

● More details in the Go blog: go.dev/blog

Details about gokrazy are at gokrazy.org 

● Questions? Talk to me after the presentation :)

● Give me feedback on this presentation!

https://go.dev/blog/
https://gokrazy.org/
https://forms.gle/oBACeYuaKZpUyuEL8

